Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03

JAEA-Research-2021-018.pdf:2.93MB

Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

Journal Articles

A Plan of materials irradiation facility at J-PARC for development of ADS and high-power accelerator facilities

Maekawa, Fujio

JPS Conference Proceedings (Internet), 33, p.011042_1 - 011042_6, 2021/03

Development of beam window (BW) materials is one of crucial issues in development of accelerator driven nuclear transmutation systems (ADS). The BW is exposed to high energy protons and spallation neutrons, and also to corrosive lead-bismuth eutectic (LBE) alloy at high temperature of about 500$$^{circ}$$C. Recently, not only high-power accelerators but also high-power targets are the rate-limiting factor for increasing the power of accelerator facilities in terms of radiation damage and heat removal. To study radiation damage on BW and target materials for high-power accelerator facilities including ADS, we are planning a materials irradiation facility by utilizing the proton beam of 400 MeV and 250 kW provided by the J-PARC's Linac. The target is flowing LBE alloy which is a candidate target and coolant material of ADS. When a steel sample is irradiated in the target for one year, the sample receives radiation damage of about 10 dpa at maximum which is equivalent to the yearly radiation damage of ADS's BW. In the current facility concept, the facility is equipped with a hot-laboratory for efficient post-irradiation examination. The facility will be outlined in this presentation.

Journal Articles

Research and development activities for accelerator-driven system in JAEA

Sugawara, Takanori; Takei, Hayanori; Iwamoto, Hiroki; Oizumi, Akito; Nishihara, Kenji; Tsujimoto, Kazufumi

Progress in Nuclear Energy, 106, p.27 - 33, 2018/07

 Times Cited Count:16 Percentile:85.18(Nuclear Science & Technology)

The Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides which will be partitioned from the high level waste. There are various inherent issues for the research and development on the ADS. The recent two activities to realize a feasible and reliable ADS concept are introduced in this paper. For the feasibility, the design of a beam window which is a boundary of the accelerator and the subcritical core, is one of the most important issues. To mitigate the design condition of the beam window, namely to reduce the proton beam current, the subcritical core concept with subcriticality adjustment rods were investigated. For the reliability, the beam-trip is the inherent and serious issue for the ADS design because it induces rapid temperature change to coolant and structures in the subcritical core. To improve the beam-trip frequencies, a double-accelerator concept was proposed and its beam-trip frequency was estimated.

Journal Articles

Impact of PHITS spallation models on the neutronics design of an accelerator-driven system

Iwamoto, Hiroki; Nishihara, Kenji; Iwamoto, Yosuke; Hashimoto, Shintaro; Matsuda, Norihiro; Sato, Tatsuhiko; Harada, Masahide; Maekawa, Fujio

Journal of Nuclear Science and Technology, 53(10), p.1585 - 1594, 2016/10

 Times Cited Count:18 Percentile:85.7(Nuclear Science & Technology)

Journal Articles

J-PARC transmutation experimental facility programme

Sasa, Toshinobu; Takei, Hayanori; Saito, Shigeru; Obayashi, Hironari; Nishihara, Kenji; Sugawara, Takanori; Iwamoto, Hiroki; Yamaguchi, Kazushi; Tsujimoto, Kazufumi; Oigawa, Hiroyuki

NEA/CSNI/R(2015)2 (Internet), p.85 - 91, 2015/06

Nuclear transmutation got much interested as an effective option of nuclear waste management. Japan Atomic Energy Agency (JAEA) proposes the transmutation of minor actinides (MA) by accelerator-driven system (ADS) using lead-bismuth alloy (Pb-Bi). To obtain the data for ADS design, JAEA plans to build a Transmutation Experimental Facility (TEF) in the J-PARC project. TEF consists of two buildings, an ADS target test facility (TEF-T) with 400MeV-250kW Pb-Bi target, and a Transmutation Physics Experimental Facility (TEF-P), which set up a fast critical assembly driven by low power proton beam with MA fuel. In TEF-T, irradiation test for materials, and engineering tests for Pb-Bi target operation will be performed. Various research plans such as nuclear data measurements have been proposed and layout of the experimental hall are underway. In the presentation, roadmap to establish the ADS transmutor and latest design activities for TEF construction will be summarized.

Journal Articles

Measurement of LBE flow velocity profile by UDVP

Kikuchi, Kenji; Takeda, Yasushi*; Obayashi, Hiroo*; Tezuka, Masao*; Sato, Hiroshi

Journal of Nuclear Materials, 356(1-3), p.273 - 279, 2006/09

 Times Cited Count:11 Percentile:56.98(Materials Science, Multidisciplinary)

Measurements of LBE flow velocity profile were realized in the spallation target model by the ultrasonic Doppler velocity profile technique. Hitherto, it has not yet been done well because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. Measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels. The electromagnetic pump generates LBE flow and the flow rate was measured by the electromagnetic flow meter. Measurement results show that re-circulation occurred near the surface of beam window, which might affect a heat transfer of target container.

Journal Articles

Design study around beam window of ADS

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Nishihara, Kenji; Saito, Shigeru; Mizumoto, Motoharu; Takano, Hideki*; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.325 - 334, 2005/11

The Japan Atomic Energy Research Institute (JAERI) is conducting the research and development (R&D) on the Accelerator-Driven Subcritical System (ADS) for the effective transmutation of minor actinides (MAs). The ADS proposed by JAERI is the 800 MWth, Pb-Bi cooled, tank-type subcritical reactor loaded with (MA+Pu) nitride fuel. The Pb-Bi is also used as the spallation target. In this study, the feasibility of the ADS was discussed with putting the focus on the design around the beam window. The partition wall was placed between the target region and the ductless-type fuel assemblies to keep the good cooling performance for the hot-spot fuel pin. The flow control nozzle was installed to cool the beam window effectively. The thermal-hydraulic analysis showed that the maximum temperature at the outer surface of the beam window could be repressed below 500 $$^{circ}$$C even in the case of the maximum beam power of 30 MW. The stress caused by the external pressure and the temperature distribution of the beam window was also below the allowable limit.

Journal Articles

Research and development program on accelerator driven subcritical system in JAERI

Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Kurata, Yuji; Mizumoto, Motoharu; Sasa, Toshinobu; Nishihara, Kenji; Saito, Shigeru; Umeno, Makoto*; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The Japan Atomic Energy Research Institute (JAERI) has been proceeding with the research and development (R&D) on accelerator-driven subcritical system (ADS). The ADS proposed by JAERI is a lead-bismuth (Pb-Bi) eutectic cooled fast subcritical core with 800 MWth. To realize such an ADS, some technical issues should be studied, developed and demonstrated. JAERI has started a comprehensive R&D program since the fiscal year of 2002 to acquire knowledge and elemental technology that are necessary for the validation of engineering feasibility of the ADS. The first stage of the program had been continued for three years. The program is conducted by JAERI, and many institutes, universities and private companies were involved. Items of R&D are concentrated on three technical areas peculiar to the ADS: (1) superconducting linear accelerator (SC-LINAC), (2) Pb-Bi eutectic as spallation target and core coolant, and (3) subcritical core design and technology. In the present work, the outline and the results in the first stage of the program are reported.

Journal Articles

Effect of proton beam profile on stress in JSNS target vessel

Kogawa, Hiroyuki; Ishikura, Shuichi*; Sato, Hiroshi; Harada, Masahide; Takatama, Shunichi*; Futakawa, Masatoshi; Haga, Katsuhiro; Hino, Ryutaro; Meigo, Shinichiro; Maekawa, Fujio; et al.

Journal of Nuclear Materials, 343(1-3), p.178 - 183, 2005/08

 Times Cited Count:8 Percentile:49.16(Materials Science, Multidisciplinary)

A cross-flow type (CFT) mercury target with flow guide blades, which has been developed for JSNS, can suppress the generation of stagnant flow region especially near the beam window where the peak heat density is generated due to spallation reaction. Then, a flat type beam window has been applied to the CFT target from the viewpoint of suppressing dynamic stress caused by a pressure wave, which has been estimated with a mercury model of the linear equation of state. The recent experimental results obtained by using a proton beam incidents to mercury led that a cutoff pressure model in the equation of state of mercury caused a suitable dynamic stress with experimental results. Dynamic stress analyses were carried out with the cutoff pressure model, in which the negative pressure less than 0.15 MPa was not generated. The generated dynamic stress in the flat beam window became much larger than that in a semi-cylindrical type window. However, the generated stress in the semi-cylindrical type beam window was over the allowable stress of SS316L under the peak heat density of 668 W/cc. In order to decrease the dynamic stress in the semi-cylindrical beam window, the incident proton beam was defocused to decrease the peak heat density down to 218 W/cm$$^{3}$$. As a result, the dynamic stress could be suppressed less than the allowable stress. On the other hand, due to defocus of the proton beam, high heat density was generated on the end of the flow guide blades, which caused high thermal stress exceeding the allowable stress. To decrease the thermal stress, several shapes of the blade ends were studied analytically, which were selected so as not to affect the mercury flow distribution. A simple thin-end blade showed low thermal stress below the allowable stress.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Target station design of 1 MW spallation neutron source at the high intensity proton accelerator facilities J-PARC

Takada, Hiroshi; Maekawa, Fujio; Honmura, Shiro*; Yoshida, Katsuhiko*; Teraoku, Takuji*; Meigo, Shinichiro; Sakai, Akio*; Kasugai, Yoshimi; Kanechika, Shuji*; Otake, Hidenori*; et al.

Proceedings of ICANS-XVI, Volume 3, p.1115 - 1125, 2003/07

no abstracts in English

Journal Articles

Design of beam incident monitor for spallation neutron target of JSNS

Meigo, Shinichiro; Harada, Masahide; Teraoku, Takuji*; Maekawa, Fujio

Proceedings of ICANS-XVI, Volume 3, p.1175 - 1180, 2003/07

It is important to monitor the proton beam for the high intensity pulse spallation target. Especially for the beam halo, which may irradiate the bulk surrounding the target, it is important to be observed to prevent causing heat spot in the shielding bulk. At JSNS, a proton beam monitors are located at front of the target. These monitors are assembled with the proton beam window. Since this scheme increases the radiation on the monitor due to the beam loss at the windows, it may arise heat deposition on the monitor. Therefore, heat deposition is calculated with NMTC/JAM. It is found that the heat deposition for normal operation is less than 0.1 W/cc.

Journal Articles

Structural integrity of beam window of mercury target

Kogawa, Hiroyuki; Ishikura, Shuichi*; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 7 Pages, 2003/04

The developments of a MW-class spallation neutron source facility are being carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. A mercury target will be used as a neutron source in the facility. The mercury target vessel made of 316LSS will be subjected to pressure wave generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will make huge stress on the vessel and will deform the vessel, which would cause cavitation in mercury. To estimate the structural integrity of the mercury target vessel, especially beam window, dynamic stress behaviors due to 1MW-pulsed proton beam injection were analyzed by using FEM code. In the analyses, two types of the target vessels with semi-cylindrical and flat type windows were used as analytical models. As the results, it has been understood that the stress generated in the beam window by the pressure wave could be treated as the secondary stress. Also it was confirmed that the flat type window would be more advantageous from the structural viewpoint than the semi-cylindrical type window.

JAEA Reports

Structual design study of a proton beam window for a 1-MW spallation neutron source

Teraoku, Takuji*; Terada, Atsuhiko*; Maekawa, Fujio; Meigo, Shinichiro; Kaminaga, Masanori; Ishikura, Shuichi*; Hino, Ryutaro

JAERI-Tech 2003-026, 77 Pages, 2003/03

JAERI-Tech-2003-026.pdf:19.78MB

A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK Proton Accelerator Project(J-PARC). The proton beam window functions as a boundary wall between a high vacuum area and a helium atmosphere and it is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows, flat-type and curved-type. We evaluated the strength of structure and thermal hydraulic analysis. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and the stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible.

Journal Articles

Research and development program on accelerator driven system in JAERI

Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Tsujimoto, Kazufumi; Kurata, Yuji; Sasa, Toshinobu; Takano, Hideki; Nishihara, Kenji; Saito, Shigeru; Futakawa, Masatoshi; et al.

Proceedings of GLOBAL2003 Atoms for Prosperity; Updating Eisenhower's Global Vision for Nuclear Energy (CD-ROM), p.1374 - 1379, 2003/00

JAERI is developing an Accelerator Driven System (ADS) for transmutation of nuclear waste such as minor actinide and long-lived fission product. To acquire the knowledge and the elemental technology that are necessary for the validation of engineering feasibility of ADS, JAERI has started a comprehensive research and development (R&D) program since 2002. The first stage of the program will be continued for three years. The program is conducted by JAERI with many institutes, universities and private companies. Items of R&D are concentrated on three technical areas peculiar to ADS: (1) a superconducting linear accelerator, (2) lead-bismuth eutectic as spallation target and core coolant, and (3) subcritical core design and physics. The outline and the preliminary results of the program are summarized in the present report.

Journal Articles

Conceptual design study of the transmutation experimental facilities

Sasa, Toshinobu; Oigawa, Hiroyuki; Kikuchi, Kenji; Ikeda, Yujiro

Proceedings of American Nuclear Society Conference "Nuclear Applications in the New Millennium" (AccApp-ADTTA '01) (CD-ROM), 7 Pages, 2002/00

A design study of the accelerator-driven system (ADS) for transmutation of minor actinides and long-lived fission products has been performed at Japan Atomic Energy Research Institute (JAERI) under the national OMEGA program. To solve the technical issues related to the ADS development, a transmutation experimental facility (TEF) is planned to bulid under the JAERI-High Energy Accelerator Research Organization joint project. The TEF consists of two facilities, Transmutation Physics Experimental Facility and Transmutation Engineering Experimental Facility. Proton beams of 600 MeV and 0.3 mA are to be delivered to this facility. The presentation describes a conceptual design study of the TEF.

Journal Articles

Experimental study on the critical heat flux (CHF) in a rectangular channel with micro ribs for a solid target and proton beam window design

Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio

Proceedings of International Workshop on Current Status and Future Directions in Boiling Heat Transfer and Two-Phase Flow, p.135 - 141, 2000/00

no abstracts in English

Journal Articles

Analyses on pressure wave propagation and dynamic stress in mercury targets

Ishikura, Shuichi*; Kaminaga, Masanori; *; Hino, Ryutaro; *; *; *

Proc. of 14th Meeting of the Int. Collaboration on Advanced Neutron Sources (ICANS-14), 1, p.288 - 300, 1998/00

no abstracts in English

Journal Articles

The evaluation of radiation damage to the target material due to the injection of medium-and high-energy protons

*; X.Chen*; *; Harada, Hideo*; ; Takizuka, Takakazu; Sasa, Toshinobu

Proc. of 2nd Int. Conf. on Accelerator-Driven Transmutation Technologies and Applications, 2, p.960 - 966, 1996/00

no abstracts in English

Oral presentation

Development of creep analysis system for ADS beam window

Watanabe, Nao; Sugawara, Takanori; Nishihara, Kenji; Kaji, Yoshiyuki

no journal, , 

In the design of Accelerator-Driven System (ADS), a beam window is one of the structures used under severe conditions. Since the maximum temperature of the beam window at rated operation will be more than 500$$^{circ}$$C, a creep damage evaluation has been required. Therefore, we have developed a coupled analysis system on ANSYS Workbench to evaluate the creep strain quantitatively. In this system, temperature distribution of the beam window is calculated by the coupled analysis of particle transport and thermal hydraulics analyses, and then is used as an input data for a creep analysis. Calculation result by this analysis system showed that the creep strain after the rated operation was less than 0.1%.

23 (Records 1-20 displayed on this page)